Modeling the Signatures of Galaxy Assembly

Claude-André Faucher-Giguère

UC Berkeley
Miller Institute for Basic Research in Science

The Need for Sustained Accretion

- Galaxies deplete their H_2 on time scale \sim Gyr $\ll t_H$
- Measured HI reservoir vs. z is insufficient
- Must be continuously replenished by accretion of ionized gas from the IGM!

Cold vs. Hot Modes

- Gas accretion is predicted to be bimodal:
 - ⇒ cold mode: most accreted gas is never shock heated to T_{vir} and maintains $T < 2.5 \times 10^5$ K
 - hot mode: smaller fraction shock heats and cools as in classical picture
- Found in both SPH and AMR numerical simulations

Connections to Observed Phenomena?

• Could be connected to a host of observed phenomena:

• But, are they?

Observational Puzzle

• So far, little trace of infalling cool material around $z\sim2-3$ galaxies:

Dekel et al. (2009) - theory

When viewed from a given direction, the column density of cold gas below 10⁵ K is above 10²⁰ cm⁻² for 25% of the area within the virial radius.

Steidel et al. (2010) - obs.

to be no way to reconcile the observed CGM absorption line strength and kinematics with the results of simulations ??

Based on:

- 1000s of LBGs
- including 512 close pairs

see ubiquitous outflows, but little infall

A problem for the cold mode?

Observational Puzzle

• So far, little trace of infalling cool material around $z\sim2-3$ galaxies:

Dekel et al. (2009) - theory

density of cold gas below 10⁵ K is above 10²⁰ cm⁻² for 25% of the area within the virial radius.

Steidel et al. (2010) - obs.

to be no way to reconcile the observed CGM absorption line strength and kinematics with the results of simulations ??

Based on:

- 1000s of LBGs
- including 512 close pairs

see ubiquitous outflows, but little infall

A problem for the cold mode?

Observational Puzzle

• So far, little trace of infalling cool material around $z\sim2-3$ galaxies:

Dekel et al. (2009) - theory

density of cold gas below 10⁵ K is above 10²⁰ cm⁻² for 25% of the area within the virial radius.

Steidel et al. (2010) - obs.

In any case, there seems

to be no way to reconcile the observed CGM absorption line strength and kinematics with the results of simulations,

Based on:

- 1000s of LBGs
- including 512 close pairs

see ubiquitous outflows, but little infall

A problem for the cold mode?

Theoretical Issues

- Focus on the covering factor of high-z cold streams
- Basic numerical requirements:
 - need high-resolution to model the thin filaments
 - → need RT to predict what we measure, HI
- As for Lyα emission, look at simplified
 problem of pure accretion in ΛCDM

 $10^6~{
m M}_{\odot}$ res.

27x better

Numerical Setup

- Zoom-in simulations for very high resolution
 - \Rightarrow 27 proper pc gas smoothing length achieved at z=2
- Milky Way progenitor, LBG at z~2-3
- Ionizing RT
 - → UV background
 - → local sources

 Lower-resolution runs to check convergence, variance CAFG & Kereš, submitted

Numerical Setup

- Zoom-in simulations for very high resolution
 - \Rightarrow 27 proper pc gas smoothing length achieved at z=2
 - ε=275 comoving pc/h Plummer equivalent gravity
- Milky Way progenitor, LBG at z~2-3
- Ionizing RT
 - → UV background
 - → local sources
- Lower-resolution runs to check convergence, variance

a = 0.032

100 ckpc/h

CAFG & Kereš, submitted

HI Stream Covering Factor

The DLA covering factor of accretion streams at z~2, where observations are most sensitive, is only a couple %, and mostly from the galaxy.

5%

DLA:

2%

9%

HI Stream Covering Factor

The DLA covering factor of accretion streams at z~2, where observations are most sensitive, is only a couple %, and mostly from the galaxy.

Compare with Winds

 Galactic outflows were not included in the current simulations, but we know they are there in reality:

In LBGs, interstellar absorption (almost) always blueshifted, Lyα emission always redshifted

⇒ winds with ~I covering factor

Steidel et al. (2010)

- At z~2, where cold streams covering factor << I, absorption spectra are naturally dominated by wind signatures
- So it's okay that we haven't seen much trace of the cold mode yet

Lya Emission

- Also computed Lyα emission from cold accretion, with ionizing + line RT (CAFG et al. 2010)
- Contrary to previous studies (without RT), find that pure cooling cannot explain the observed giant Ly α blobs, with $L_{\alpha} \sim 10^{44}$ erg s⁻¹:
 - Lyα luminosity too small
 - surface brightness too low
 - spectral shape inconsistent with outflow signatures in observed sources
- Most likely, giant LABs are manifestations of feedback processes
- Some fainter sources (e.g., Rauch et al. 2008) could be powered by cooling

The Way Forward

- Our studies of Lyα cooling emission and absorption show that it is quite subtle to detect cold accretion
- Getting at it will require robust theoretical studies in concert with detailed spectroscopic measurements of the circum-galactic medium of high-redshift galaxies; it won't be easy!
- The most promising diagnostics of infall vs. outflows are:
 - \rightarrow kinematics (accretion at $v \sim v_{circ}$ vs. outflows up to ~ 800 km/s)
 - \rightarrow metallicity (expect $Z_{infall} < Z_{wind}$, but by how much?)
- Need enough measurements to pull out small covering factor cold streams
- We must start including winds and metals in our models